tisc


Nametisc JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/Yutsuro/pytorch-time-series-classification
SummarySimple model creation and training framework for time series classification in Pytorch
upload_time2024-06-15 10:17:08
maintainerNone
docs_urlNone
authorYutsuro
requires_pythonNone
licenseApache
keywords pytorch time-series-classification lstm bilstm transformer machine-learning deep-learning ai artificial-intelligence
VCS
bugtrack_url
requirements matplotlib numpy scikit_learn seaborn japanize-matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tisc: pytorch-time-series-classification



[![PyPI version](https://badge.fury.io/py/tisc.svg)](https://badge.fury.io/py/tisc)

[![Downloads](https://pepy.tech/badge/tisc)](https://pepy.tech/project/tisc)

[![Downloads](https://pepy.tech/badge/tisc/month)](https://pepy.tech/project/tisc)

[![Downloads](https://pepy.tech/badge/tisc/week)](https://pepy.tech/project/tisc)



Simple model creation and training framework for <b>ti</b>me <b>s</b>eries <b>c</b>lassification in Pytorch.



## What can you do with tisc?



<b>`tisc` is a simple framework for time series classification in Pytorch.</b>



- You can create a Pytorch model for time series classification with just one function.

- You can choose the model from many supported models.

- You can train the model with just one method.

- You can evaluate or predict with the trained model with just one method.



## Setup



### 1. Install tisc

```bash

pip install tisc

```



### 2. Install Pytorch



If Pytorch is not installed to your environment, you have to install Pytorch that matches your environment from the official website: [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)



example (this command is for my environment):

```bash

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

```



## Usage



### 0. Prepare the dataset / dataloader



#### Time series data



The time series data should be a 3D tensor with the shape of `(number_of_samples, timestep, dimentions)`.



For example, if you have a dataset with 1000 samples, each sample has 20 timesteps, and each timestep has 100 dimentions, the shape of the dataset should be `(1000, 20, 100)`.



The label should be a 1D tensor with the shape of `(number_of_samples,)`.



For example, if you have a dataset with 1000 samples, the shape of the label should be `(1000,)`.



```python

import torch



# The shape of the time series data should be (number_of_samples, timestep, dimentions)

print(train_data.shape)  # (1000, 20, 100)



# The shape of the label should be (number_of_samples,)

print(train_label.shape)  # (1000,)

```



#### Dataset



`tisc` supports the dataset that is a subclass of `torch.utils.data.Dataset`. 



The dataset should return a tuple of `(data, label)` in the `__getitem__` method.



You can use `TensorDataset` from `torch.utils.data` to create a dataset from the time series data and the label easily.



```python

import torch

from torch.utils.data import TensorDataset



# Prepare the dataset with TensorDataset

train_dataset = TensorDataset(train_data, train_label)

val_dataset = TensorDataset(val_data, val_label)

test_dataset = TensorDataset(test_data, test_label)



# Check the type of the dataset

print(type(train_dataset))  # <class 'torch.utils.data.dataset.TensorDataset'>

```



#### Dataloader



You have to use `torch.utils.data.DataLoader` to load the dataset.



```python

import torch

from torch.utils.data import DataLoader



# Prepare the dataset

train_loader = DataLoader(train_dataset, batch_size=512, shuffle=True)

val_loader = DataLoader(val_dataset, batch_size=512, shuffle=False)

test_loader = DataLoader(test_dataset, batch_size=512, shuffle=False)



# Check the type of the dataloader

print(type(train_loader))  # <class 'torch.utils.data.dataloader.DataLoader'>

```

### 1. Create a classifier



You can create a classifier with the `build_classifier` function.



The `build_classifier` function returns a `tisc.Classifier` object.



A `Classifier` object contains the model, the optimizer, the loss function, and the training and evaluation methods.



When you create a classifier, you have to pass the following arguments:



- `model_name`: The name of the model. The model should be one of the supported models. (e.g., `'LSTM'`, `'BiLSTM'`, `'Transformer'`)

- `timestep`: The number of timesteps in the time series data.

- `dimentions`: The number of dimentions in each timestep.

- `num_classes`: The number of classes in the dataset.



```python

import tisc



# Create a classifier

classifier = tisc.build_classifier(model_name='LSTM',

                                   timestep=20,

                                   dimentions=100,

                                   num_classes=10)



# Check the type of the classifier

print(type(classifier))  # <class 'tisc.Classifier'>

```



### 2. Train the classifier



You can train the classifier with the `train` method.



The `train` method requires the following arguments:



- `epochs`: The number of epochs to train the classifier.

- `train_loader`: The dataloader for the training dataset.



you can pass `val_loader` to train the classifier with validation.



```python

classifier.train(train_loader, epochs=100)



# If the `val_loader` argument is passed, you can train the classifier with validation.

classifier.train(train_loader, val_loader=val_loader, epochs=100)

```



### 3. Evaluate the classifier



You can evaluate the classifier with the `evaluate` method.



The `evaluate` method requires the following arguments:



- `test_loader`: The dataloader for the test dataset.



The `evaluate` method can return the classification report and the confusion matrix if you pass the `return_report` and `return_confusion_matrix` arguments as `True`.



If `with_best_model` argument is `True`, the classifier will use the best model that marked the best result about the model saving strategy. 



```python

classifier.evaluate(test_loader,

                    return_report=True,

                    return_confusion_matrix=True,

                    with_best_model=True)

```



## Supported models



The models that can be used in version 0.1.0:



- LSTM

- BiLSTM

- Transformer



and more! (More models will be added.)




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Yutsuro/pytorch-time-series-classification",
    "name": "tisc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Pytorch Time-Series-Classification LSTM BiLSTM Transformer Machine-Learning Deep-Learning AI Artificial-Intelligence",
    "author": "Yutsuro",
    "author_email": "Yuki@utsu.ro",
    "download_url": "https://files.pythonhosted.org/packages/61/f5/1cd27265dc92780d09426a2d420b4fc9be931d91da4ee8c93a5030a57e57/tisc-0.1.1.tar.gz",
    "platform": null,
    "description": "# tisc: pytorch-time-series-classification\r\n\r\n\r\n\r\n[![PyPI version](https://badge.fury.io/py/tisc.svg)](https://badge.fury.io/py/tisc)\r\n\r\n[![Downloads](https://pepy.tech/badge/tisc)](https://pepy.tech/project/tisc)\r\n\r\n[![Downloads](https://pepy.tech/badge/tisc/month)](https://pepy.tech/project/tisc)\r\n\r\n[![Downloads](https://pepy.tech/badge/tisc/week)](https://pepy.tech/project/tisc)\r\n\r\n\r\n\r\nSimple model creation and training framework for <b>ti</b>me <b>s</b>eries <b>c</b>lassification in Pytorch.\r\n\r\n\r\n\r\n## What can you do with tisc?\r\n\r\n\r\n\r\n<b>`tisc` is a simple framework for time series classification in Pytorch.</b>\r\n\r\n\r\n\r\n- You can create a Pytorch model for time series classification with just one function.\r\n\r\n- You can choose the model from many supported models.\r\n\r\n- You can train the model with just one method.\r\n\r\n- You can evaluate or predict with the trained model with just one method.\r\n\r\n\r\n\r\n## Setup\r\n\r\n\r\n\r\n### 1. Install tisc\r\n\r\n```bash\r\n\r\npip install tisc\r\n\r\n```\r\n\r\n\r\n\r\n### 2. Install Pytorch\r\n\r\n\r\n\r\nIf Pytorch is not installed to your environment, you have to install Pytorch that matches your environment from the official website: [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/)\r\n\r\n\r\n\r\nexample (this command is for my environment):\r\n\r\n```bash\r\n\r\npip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118\r\n\r\n```\r\n\r\n\r\n\r\n## Usage\r\n\r\n\r\n\r\n### 0. Prepare the dataset / dataloader\r\n\r\n\r\n\r\n#### Time series data\r\n\r\n\r\n\r\nThe time series data should be a 3D tensor with the shape of `(number_of_samples, timestep, dimentions)`.\r\n\r\n\r\n\r\nFor example, if you have a dataset with 1000 samples, each sample has 20 timesteps, and each timestep has 100 dimentions, the shape of the dataset should be `(1000, 20, 100)`.\r\n\r\n\r\n\r\nThe label should be a 1D tensor with the shape of `(number_of_samples,)`.\r\n\r\n\r\n\r\nFor example, if you have a dataset with 1000 samples, the shape of the label should be `(1000,)`.\r\n\r\n\r\n\r\n```python\r\n\r\nimport torch\r\n\r\n\r\n\r\n# The shape of the time series data should be (number_of_samples, timestep, dimentions)\r\n\r\nprint(train_data.shape)  # (1000, 20, 100)\r\n\r\n\r\n\r\n# The shape of the label should be (number_of_samples,)\r\n\r\nprint(train_label.shape)  # (1000,)\r\n\r\n```\r\n\r\n\r\n\r\n#### Dataset\r\n\r\n\r\n\r\n`tisc` supports the dataset that is a subclass of `torch.utils.data.Dataset`. \r\n\r\n\r\n\r\nThe dataset should return a tuple of `(data, label)` in the `__getitem__` method.\r\n\r\n\r\n\r\nYou can use `TensorDataset` from `torch.utils.data` to create a dataset from the time series data and the label easily.\r\n\r\n\r\n\r\n```python\r\n\r\nimport torch\r\n\r\nfrom torch.utils.data import TensorDataset\r\n\r\n\r\n\r\n# Prepare the dataset with TensorDataset\r\n\r\ntrain_dataset = TensorDataset(train_data, train_label)\r\n\r\nval_dataset = TensorDataset(val_data, val_label)\r\n\r\ntest_dataset = TensorDataset(test_data, test_label)\r\n\r\n\r\n\r\n# Check the type of the dataset\r\n\r\nprint(type(train_dataset))  # <class 'torch.utils.data.dataset.TensorDataset'>\r\n\r\n```\r\n\r\n\r\n\r\n#### Dataloader\r\n\r\n\r\n\r\nYou have to use `torch.utils.data.DataLoader` to load the dataset.\r\n\r\n\r\n\r\n```python\r\n\r\nimport torch\r\n\r\nfrom torch.utils.data import DataLoader\r\n\r\n\r\n\r\n# Prepare the dataset\r\n\r\ntrain_loader = DataLoader(train_dataset, batch_size=512, shuffle=True)\r\n\r\nval_loader = DataLoader(val_dataset, batch_size=512, shuffle=False)\r\n\r\ntest_loader = DataLoader(test_dataset, batch_size=512, shuffle=False)\r\n\r\n\r\n\r\n# Check the type of the dataloader\r\n\r\nprint(type(train_loader))  # <class 'torch.utils.data.dataloader.DataLoader'>\r\n\r\n```\r\n\r\n### 1. Create a classifier\r\n\r\n\r\n\r\nYou can create a classifier with the `build_classifier` function.\r\n\r\n\r\n\r\nThe `build_classifier` function returns a `tisc.Classifier` object.\r\n\r\n\r\n\r\nA `Classifier` object contains the model, the optimizer, the loss function, and the training and evaluation methods.\r\n\r\n\r\n\r\nWhen you create a classifier, you have to pass the following arguments:\r\n\r\n\r\n\r\n- `model_name`: The name of the model. The model should be one of the supported models. (e.g., `'LSTM'`, `'BiLSTM'`, `'Transformer'`)\r\n\r\n- `timestep`: The number of timesteps in the time series data.\r\n\r\n- `dimentions`: The number of dimentions in each timestep.\r\n\r\n- `num_classes`: The number of classes in the dataset.\r\n\r\n\r\n\r\n```python\r\n\r\nimport tisc\r\n\r\n\r\n\r\n# Create a classifier\r\n\r\nclassifier = tisc.build_classifier(model_name='LSTM',\r\n\r\n                                   timestep=20,\r\n\r\n                                   dimentions=100,\r\n\r\n                                   num_classes=10)\r\n\r\n\r\n\r\n# Check the type of the classifier\r\n\r\nprint(type(classifier))  # <class 'tisc.Classifier'>\r\n\r\n```\r\n\r\n\r\n\r\n### 2. Train the classifier\r\n\r\n\r\n\r\nYou can train the classifier with the `train` method.\r\n\r\n\r\n\r\nThe `train` method requires the following arguments:\r\n\r\n\r\n\r\n- `epochs`: The number of epochs to train the classifier.\r\n\r\n- `train_loader`: The dataloader for the training dataset.\r\n\r\n\r\n\r\nyou can pass `val_loader` to train the classifier with validation.\r\n\r\n\r\n\r\n```python\r\n\r\nclassifier.train(train_loader, epochs=100)\r\n\r\n\r\n\r\n# If the `val_loader` argument is passed, you can train the classifier with validation.\r\n\r\nclassifier.train(train_loader, val_loader=val_loader, epochs=100)\r\n\r\n```\r\n\r\n\r\n\r\n### 3. Evaluate the classifier\r\n\r\n\r\n\r\nYou can evaluate the classifier with the `evaluate` method.\r\n\r\n\r\n\r\nThe `evaluate` method requires the following arguments:\r\n\r\n\r\n\r\n- `test_loader`: The dataloader for the test dataset.\r\n\r\n\r\n\r\nThe `evaluate` method can return the classification report and the confusion matrix if you pass the `return_report` and `return_confusion_matrix` arguments as `True`.\r\n\r\n\r\n\r\nIf `with_best_model` argument is `True`, the classifier will use the best model that marked the best result about the model saving strategy. \r\n\r\n\r\n\r\n```python\r\n\r\nclassifier.evaluate(test_loader,\r\n\r\n                    return_report=True,\r\n\r\n                    return_confusion_matrix=True,\r\n\r\n                    with_best_model=True)\r\n\r\n```\r\n\r\n\r\n\r\n## Supported models\r\n\r\n\r\n\r\nThe models that can be used in version 0.1.0:\r\n\r\n\r\n\r\n- LSTM\r\n\r\n- BiLSTM\r\n\r\n- Transformer\r\n\r\n\r\n\r\nand more! (More models will be added.)\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "Apache",
    "summary": "Simple model creation and training framework for time series classification in Pytorch",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/Yutsuro/pytorch-time-series-classification"
    },
    "split_keywords": [
        "pytorch",
        "time-series-classification",
        "lstm",
        "bilstm",
        "transformer",
        "machine-learning",
        "deep-learning",
        "ai",
        "artificial-intelligence"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b14c65de202a982db63c0fae7bf85606ac05222bfd764ef2170c1836bde0ad4c",
                "md5": "d84950ac195fd587d87f269e261013bd",
                "sha256": "bf58b917a7f8b8fa570f6a35fa74d358c40d63b62db0f2490ed7e8fd1b300d36"
            },
            "downloads": -1,
            "filename": "tisc-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d84950ac195fd587d87f269e261013bd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17017,
            "upload_time": "2024-06-15T10:17:06",
            "upload_time_iso_8601": "2024-06-15T10:17:06.511468Z",
            "url": "https://files.pythonhosted.org/packages/b1/4c/65de202a982db63c0fae7bf85606ac05222bfd764ef2170c1836bde0ad4c/tisc-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "61f51cd27265dc92780d09426a2d420b4fc9be931d91da4ee8c93a5030a57e57",
                "md5": "e9fb653c5395783e1dff1a770ffa2596",
                "sha256": "8a8d884bb916a100b86bf8034d176c595629ce4739fce94c5543f42b479fb601"
            },
            "downloads": -1,
            "filename": "tisc-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e9fb653c5395783e1dff1a770ffa2596",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17084,
            "upload_time": "2024-06-15T10:17:08",
            "upload_time_iso_8601": "2024-06-15T10:17:08.231505Z",
            "url": "https://files.pythonhosted.org/packages/61/f5/1cd27265dc92780d09426a2d420b4fc9be931d91da4ee8c93a5030a57e57/tisc-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-15 10:17:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Yutsuro",
    "github_project": "pytorch-time-series-classification",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.8.3"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.19.5"
                ],
                [
                    "<",
                    "2.0"
                ]
            ]
        },
        {
            "name": "scikit_learn",
            "specs": [
                [
                    ">=",
                    "1.4.1"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.13.2"
                ]
            ]
        },
        {
            "name": "japanize-matplotlib",
            "specs": [
                [
                    "==",
                    "1.1.3"
                ]
            ]
        }
    ],
    "lcname": "tisc"
}
        
Elapsed time: 0.55349s