amylodeep


Nameamylodeep JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryPrediction of amyloid propensity from amino acid sequences using ensemble deep learning and LLM models
upload_time2025-07-27 11:09:03
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords bioinformatics amyloid deep learning protein sequence classification
VCS
bugtrack_url
requirements accelerate alembic altair annotated-types appnope asttokens attrs beautifulsoup4 blinker bs4 cachetools certifi charset-normalizer click colorlog comm contourpy cycler debugpy decorator executing filelock Flask fonttools fsspec gitdb GitPython h11 hf-xet huggingface-hub idna ipykernel ipython ipython_pygments_lexers itsdangerous jax jax-unirep jaxlib jedi Jinja2 joblib jsonschema jsonschema-specifications jupyter_client jupyter_core kiwisolver Mako MarkupSafe matplotlib matplotlib-inline ml_dtypes mpmath multipledispatch narwhals nest-asyncio networkx numpy opt_einsum optuna outcome packaging pandas parso pexpect pillow platformdirs prompt_toolkit protobuf psutil ptyprocess pure_eval pyarrow pydantic pydantic_core pydeck Pygments pyparsing PySocks python-dateutil pytz PyYAML pyzmq referencing regex requests rpds-py safetensors scikit-learn scipy seaborn selenium sentry-sdk setuptools six smmap sniffio sortedcontainers soupsieve SQLAlchemy stack-data streamlit streamlit-option-menu sympy tenacity threadpoolctl tokenizers toml torch tornado tqdm traitlets transformers trio trio-websocket typing-inspection typing_extensions tzdata urllib3 wandb wcwidth websocket-client Werkzeug wsproto xgboost
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AmyloDeep

**Prediction of amyloid propensity from amino acid sequences using deep learning**

AmyloDeep is a Python package that uses a 5-model ensemble to predict amyloidogenic regions in protein sequences using a rolling window approach. The package combines multiple state-of-the-art machine learning models including ESM2 transformers, UniRep embeddings, SVM, and XGBoost to provide accurate amyloid propensity predictions.

## Features

- **Multi-model ensemble**: Combines 5 different models for robust predictions
- **Rolling window analysis**: Analyzes sequences using sliding windows of configurable size
- **Pre-trained models**: Uses models trained on amyloid sequence databases
- **Calibrated probabilities**: Includes probability calibration for better confidence estimates
- **Easy-to-use API**: Simple Python interface and command-line tool
- **Streamlit web interface**: Optional web interface for interactive predictions

## Installation

### From PyPI (recommended)

```bash
pip install amylodeep
```

### From source

```bash
git clone https://github.com/AlisaDavtyan/protein_classification.git
cd amylodeep
pip install -e .
```



For development:
```bash
pip install amylodeep[dev]
```

## Quick Start

### Python API

```python
from amylodeep import predict_ensemble_rolling

# Predict amyloid propensity for a protein sequence
sequence = "MKTFFFLLLLFTIGFCYVQFSKLKLENLHFKDNSEGLKNGGLQRQLGLTLKFNSNSLHHTSNL"
result = predict_ensemble_rolling(sequence, window_size=6)

print(f"Average probability: {result['avg_probability']:.4f}")
print(f"Maximum probability: {result['max_probability']:.4f}")

# Access position-wise probabilities
for position, probability in result['position_probs']:
    print(f"Position {position}: {probability:.4f}")
```

### Command Line Interface

```bash
# Basic prediction
amylodeep "MKTFFFLLLLFTIGFCYVQFSKLKLENLHFKDNSEGLKNGGLQRQLGLTLKFNSNSLHHTSNL"

# With custom window size
amylodeep "SEQUENCE" --window-size 10

# Save results to file
amylodeep "SEQUENCE" --output results.json --format json

# CSV output
amylodeep "SEQUENCE" --output results.csv --format csv
```


## Model Architecture

AmyloDeep uses an ensemble of 5 models:

1. **ESM2-150M**: Fine-tuned ESM2 transformer (150M parameters)
2. **UniRep**: UniRep-based neural network classifier
3. **ESM2-650M**: Custom classifier using ESM2-650M embeddings
4. **SVM**: Support Vector Machine with ESM2 embeddings
5. **XGBoost**: Gradient boosting with ESM2 embeddings

The models are combined using probability averaging, with some models using probability calibration (Platt scaling or isotonic regression) for better confidence estimates.

## Requirements

- Python >= 3.8
- PyTorch >= 1.9.0
- Transformers >= 4.15.0
- NumPy >= 1.20.0
- scikit-learn >= 1.0.0
- XGBoost >= 1.5.0
- jax-unirep >= 2.0.0
- wandb >= 0.12.0




### Main Functions

#### `predict_ensemble_rolling(sequence, window_size=6)`

Predict amyloid propensity for a protein sequence using rolling window analysis.

**Parameters:**
- `sequence` (str): Protein sequence (amino acid letters)
- `window_size` (int): Size of the rolling window (default: 6)

**Returns:**
Dictionary containing:
- `position_probs`: List of (position, probability) tuples
- `avg_probability`: Average probability across all windows
- `max_probability`: Maximum probability across all windows
- `sequence_length`: Length of the input sequence
- `num_windows`: Number of windows analyzed


Individual model classes for ESM and UniRep-based predictions.

## Contributing

We welcome contributions! Please see our contributing guidelines for more information.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Citation

If you use AmyloDeep in your research, please cite:

```bibtex
@software{amylodeep2025,
  title={AmyloDeep: Prediction of amyloid propensity from amino acid sequences using deep learning},
  author={Alisa Davtyan},
  year={2025},
  url={https://github.com/AlisaDavtyan/protein_classification}
}
```

## Support

For questions and support:
- Open an issue on GitHub
- Contact: alisadavtyan7@gmail.com

## Changelog

### v0.1.0
- Initial release
- 5-model ensemble implementation
- Rolling window prediction
- Command-line interface
- Python API

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "amylodeep",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "bioinformatics, amyloid, deep learning, protein, sequence classification",
    "author": null,
    "author_email": "Alisa Davtyan <alisadavtyan7@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/04/fc/e4f58efb34c14b6fb031bcb21d805311cb9aa7db54000205a79c72b5f1f6/amylodeep-0.1.2.tar.gz",
    "platform": null,
    "description": "# AmyloDeep\n\n**Prediction of amyloid propensity from amino acid sequences using deep learning**\n\nAmyloDeep is a Python package that uses a 5-model ensemble to predict amyloidogenic regions in protein sequences using a rolling window approach. The package combines multiple state-of-the-art machine learning models including ESM2 transformers, UniRep embeddings, SVM, and XGBoost to provide accurate amyloid propensity predictions.\n\n## Features\n\n- **Multi-model ensemble**: Combines 5 different models for robust predictions\n- **Rolling window analysis**: Analyzes sequences using sliding windows of configurable size\n- **Pre-trained models**: Uses models trained on amyloid sequence databases\n- **Calibrated probabilities**: Includes probability calibration for better confidence estimates\n- **Easy-to-use API**: Simple Python interface and command-line tool\n- **Streamlit web interface**: Optional web interface for interactive predictions\n\n## Installation\n\n### From PyPI (recommended)\n\n```bash\npip install amylodeep\n```\n\n### From source\n\n```bash\ngit clone https://github.com/AlisaDavtyan/protein_classification.git\ncd amylodeep\npip install -e .\n```\n\n\n\nFor development:\n```bash\npip install amylodeep[dev]\n```\n\n## Quick Start\n\n### Python API\n\n```python\nfrom amylodeep import predict_ensemble_rolling\n\n# Predict amyloid propensity for a protein sequence\nsequence = \"MKTFFFLLLLFTIGFCYVQFSKLKLENLHFKDNSEGLKNGGLQRQLGLTLKFNSNSLHHTSNL\"\nresult = predict_ensemble_rolling(sequence, window_size=6)\n\nprint(f\"Average probability: {result['avg_probability']:.4f}\")\nprint(f\"Maximum probability: {result['max_probability']:.4f}\")\n\n# Access position-wise probabilities\nfor position, probability in result['position_probs']:\n    print(f\"Position {position}: {probability:.4f}\")\n```\n\n### Command Line Interface\n\n```bash\n# Basic prediction\namylodeep \"MKTFFFLLLLFTIGFCYVQFSKLKLENLHFKDNSEGLKNGGLQRQLGLTLKFNSNSLHHTSNL\"\n\n# With custom window size\namylodeep \"SEQUENCE\" --window-size 10\n\n# Save results to file\namylodeep \"SEQUENCE\" --output results.json --format json\n\n# CSV output\namylodeep \"SEQUENCE\" --output results.csv --format csv\n```\n\n\n## Model Architecture\n\nAmyloDeep uses an ensemble of 5 models:\n\n1. **ESM2-150M**: Fine-tuned ESM2 transformer (150M parameters)\n2. **UniRep**: UniRep-based neural network classifier\n3. **ESM2-650M**: Custom classifier using ESM2-650M embeddings\n4. **SVM**: Support Vector Machine with ESM2 embeddings\n5. **XGBoost**: Gradient boosting with ESM2 embeddings\n\nThe models are combined using probability averaging, with some models using probability calibration (Platt scaling or isotonic regression) for better confidence estimates.\n\n## Requirements\n\n- Python >= 3.8\n- PyTorch >= 1.9.0\n- Transformers >= 4.15.0\n- NumPy >= 1.20.0\n- scikit-learn >= 1.0.0\n- XGBoost >= 1.5.0\n- jax-unirep >= 2.0.0\n- wandb >= 0.12.0\n\n\n\n\n### Main Functions\n\n#### `predict_ensemble_rolling(sequence, window_size=6)`\n\nPredict amyloid propensity for a protein sequence using rolling window analysis.\n\n**Parameters:**\n- `sequence` (str): Protein sequence (amino acid letters)\n- `window_size` (int): Size of the rolling window (default: 6)\n\n**Returns:**\nDictionary containing:\n- `position_probs`: List of (position, probability) tuples\n- `avg_probability`: Average probability across all windows\n- `max_probability`: Maximum probability across all windows\n- `sequence_length`: Length of the input sequence\n- `num_windows`: Number of windows analyzed\n\n\nIndividual model classes for ESM and UniRep-based predictions.\n\n## Contributing\n\nWe welcome contributions! Please see our contributing guidelines for more information.\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Citation\n\nIf you use AmyloDeep in your research, please cite:\n\n```bibtex\n@software{amylodeep2025,\n  title={AmyloDeep: Prediction of amyloid propensity from amino acid sequences using deep learning},\n  author={Alisa Davtyan},\n  year={2025},\n  url={https://github.com/AlisaDavtyan/protein_classification}\n}\n```\n\n## Support\n\nFor questions and support:\n- Open an issue on GitHub\n- Contact: alisadavtyan7@gmail.com\n\n## Changelog\n\n### v0.1.0\n- Initial release\n- 5-model ensemble implementation\n- Rolling window prediction\n- Command-line interface\n- Python API\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Prediction of amyloid propensity from amino acid sequences using ensemble deep learning and LLM models",
    "version": "0.1.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/AlisaDavtyan/protein_classification/issues",
        "Repository": "https://github.com/AlisaDavtyan/protein_classification"
    },
    "split_keywords": [
        "bioinformatics",
        " amyloid",
        " deep learning",
        " protein",
        " sequence classification"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1a4d2eae8742b54f75cac6952c22e86dadd55d2126d33efff57cea311402acdb",
                "md5": "d604ab8fc846b872a7b9d1c6945997c4",
                "sha256": "980b047e77eda2655f571fad1e22faf98bfca7181dcf7c25f66cf6ba6f7636ac"
            },
            "downloads": -1,
            "filename": "amylodeep-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d604ab8fc846b872a7b9d1c6945997c4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 12428,
            "upload_time": "2025-07-27T11:09:02",
            "upload_time_iso_8601": "2025-07-27T11:09:02.595374Z",
            "url": "https://files.pythonhosted.org/packages/1a/4d/2eae8742b54f75cac6952c22e86dadd55d2126d33efff57cea311402acdb/amylodeep-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "04fce4f58efb34c14b6fb031bcb21d805311cb9aa7db54000205a79c72b5f1f6",
                "md5": "93617b436bc10fea8b7adc997ea8b398",
                "sha256": "ea3cd0ee685d80ba730e60318dad7bb17ee763a3b88853cfcdf5ce9e3bf9e69d"
            },
            "downloads": -1,
            "filename": "amylodeep-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "93617b436bc10fea8b7adc997ea8b398",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 12229,
            "upload_time": "2025-07-27T11:09:03",
            "upload_time_iso_8601": "2025-07-27T11:09:03.813369Z",
            "url": "https://files.pythonhosted.org/packages/04/fc/e4f58efb34c14b6fb031bcb21d805311cb9aa7db54000205a79c72b5f1f6/amylodeep-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-27 11:09:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AlisaDavtyan",
    "github_project": "protein_classification",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "accelerate",
            "specs": [
                [
                    "==",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "alembic",
            "specs": [
                [
                    "==",
                    "1.16.1"
                ]
            ]
        },
        {
            "name": "altair",
            "specs": [
                [
                    "==",
                    "5.5.0"
                ]
            ]
        },
        {
            "name": "annotated-types",
            "specs": [
                [
                    "==",
                    "0.7.0"
                ]
            ]
        },
        {
            "name": "appnope",
            "specs": [
                [
                    "==",
                    "0.1.4"
                ]
            ]
        },
        {
            "name": "asttokens",
            "specs": [
                [
                    "==",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "attrs",
            "specs": [
                [
                    "==",
                    "25.3.0"
                ]
            ]
        },
        {
            "name": "beautifulsoup4",
            "specs": [
                [
                    "==",
                    "4.13.4"
                ]
            ]
        },
        {
            "name": "blinker",
            "specs": [
                [
                    "==",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "bs4",
            "specs": [
                [
                    "==",
                    "0.0.2"
                ]
            ]
        },
        {
            "name": "cachetools",
            "specs": [
                [
                    "==",
                    "6.1.0"
                ]
            ]
        },
        {
            "name": "certifi",
            "specs": [
                [
                    "==",
                    "2025.7.9"
                ]
            ]
        },
        {
            "name": "charset-normalizer",
            "specs": [
                [
                    "==",
                    "3.4.2"
                ]
            ]
        },
        {
            "name": "click",
            "specs": [
                [
                    "==",
                    "8.2.1"
                ]
            ]
        },
        {
            "name": "colorlog",
            "specs": [
                [
                    "==",
                    "6.9.0"
                ]
            ]
        },
        {
            "name": "comm",
            "specs": [
                [
                    "==",
                    "0.2.2"
                ]
            ]
        },
        {
            "name": "contourpy",
            "specs": [
                [
                    "==",
                    "1.3.2"
                ]
            ]
        },
        {
            "name": "cycler",
            "specs": [
                [
                    "==",
                    "0.12.1"
                ]
            ]
        },
        {
            "name": "debugpy",
            "specs": [
                [
                    "==",
                    "1.8.14"
                ]
            ]
        },
        {
            "name": "decorator",
            "specs": [
                [
                    "==",
                    "5.2.1"
                ]
            ]
        },
        {
            "name": "executing",
            "specs": [
                [
                    "==",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "filelock",
            "specs": [
                [
                    "==",
                    "3.18.0"
                ]
            ]
        },
        {
            "name": "Flask",
            "specs": [
                [
                    "==",
                    "3.1.1"
                ]
            ]
        },
        {
            "name": "fonttools",
            "specs": [
                [
                    "==",
                    "4.58.3"
                ]
            ]
        },
        {
            "name": "fsspec",
            "specs": [
                [
                    "==",
                    "2025.5.1"
                ]
            ]
        },
        {
            "name": "gitdb",
            "specs": [
                [
                    "==",
                    "4.0.12"
                ]
            ]
        },
        {
            "name": "GitPython",
            "specs": [
                [
                    "==",
                    "3.1.44"
                ]
            ]
        },
        {
            "name": "h11",
            "specs": [
                [
                    "==",
                    "0.16.0"
                ]
            ]
        },
        {
            "name": "hf-xet",
            "specs": [
                [
                    "==",
                    "1.1.3"
                ]
            ]
        },
        {
            "name": "huggingface-hub",
            "specs": [
                [
                    "==",
                    "0.32.4"
                ]
            ]
        },
        {
            "name": "idna",
            "specs": [
                [
                    "==",
                    "3.10"
                ]
            ]
        },
        {
            "name": "ipykernel",
            "specs": [
                [
                    "==",
                    "6.29.5"
                ]
            ]
        },
        {
            "name": "ipython",
            "specs": [
                [
                    "==",
                    "9.3.0"
                ]
            ]
        },
        {
            "name": "ipython_pygments_lexers",
            "specs": [
                [
                    "==",
                    "1.1.1"
                ]
            ]
        },
        {
            "name": "itsdangerous",
            "specs": [
                [
                    "==",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "jax",
            "specs": [
                [
                    "==",
                    "0.6.1"
                ]
            ]
        },
        {
            "name": "jax-unirep",
            "specs": [
                [
                    "==",
                    "2.2.0"
                ]
            ]
        },
        {
            "name": "jaxlib",
            "specs": [
                [
                    "==",
                    "0.6.1"
                ]
            ]
        },
        {
            "name": "jedi",
            "specs": [
                [
                    "==",
                    "0.19.2"
                ]
            ]
        },
        {
            "name": "Jinja2",
            "specs": [
                [
                    "==",
                    "3.1.6"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    "==",
                    "1.5.1"
                ]
            ]
        },
        {
            "name": "jsonschema",
            "specs": [
                [
                    "==",
                    "4.24.1"
                ]
            ]
        },
        {
            "name": "jsonschema-specifications",
            "specs": [
                [
                    "==",
                    "2025.4.1"
                ]
            ]
        },
        {
            "name": "jupyter_client",
            "specs": [
                [
                    "==",
                    "8.6.3"
                ]
            ]
        },
        {
            "name": "jupyter_core",
            "specs": [
                [
                    "==",
                    "5.8.1"
                ]
            ]
        },
        {
            "name": "kiwisolver",
            "specs": [
                [
                    "==",
                    "1.4.8"
                ]
            ]
        },
        {
            "name": "Mako",
            "specs": [
                [
                    "==",
                    "1.3.10"
                ]
            ]
        },
        {
            "name": "MarkupSafe",
            "specs": [
                [
                    "==",
                    "3.0.2"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.10.3"
                ]
            ]
        },
        {
            "name": "matplotlib-inline",
            "specs": [
                [
                    "==",
                    "0.1.7"
                ]
            ]
        },
        {
            "name": "ml_dtypes",
            "specs": [
                [
                    "==",
                    "0.5.1"
                ]
            ]
        },
        {
            "name": "mpmath",
            "specs": [
                [
                    "==",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "multipledispatch",
            "specs": [
                [
                    "==",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "narwhals",
            "specs": [
                [
                    "==",
                    "1.47.1"
                ]
            ]
        },
        {
            "name": "nest-asyncio",
            "specs": [
                [
                    "==",
                    "1.6.0"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    "==",
                    "3.5"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "2.3.0"
                ]
            ]
        },
        {
            "name": "opt_einsum",
            "specs": [
                [
                    "==",
                    "3.4.0"
                ]
            ]
        },
        {
            "name": "optuna",
            "specs": [
                [
                    "==",
                    "4.3.0"
                ]
            ]
        },
        {
            "name": "outcome",
            "specs": [
                [
                    "==",
                    "1.3.0.post0"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "25.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.3.0"
                ]
            ]
        },
        {
            "name": "parso",
            "specs": [
                [
                    "==",
                    "0.8.4"
                ]
            ]
        },
        {
            "name": "pexpect",
            "specs": [
                [
                    "==",
                    "4.9.0"
                ]
            ]
        },
        {
            "name": "pillow",
            "specs": [
                [
                    "==",
                    "11.2.1"
                ]
            ]
        },
        {
            "name": "platformdirs",
            "specs": [
                [
                    "==",
                    "4.3.8"
                ]
            ]
        },
        {
            "name": "prompt_toolkit",
            "specs": [
                [
                    "==",
                    "3.0.51"
                ]
            ]
        },
        {
            "name": "protobuf",
            "specs": [
                [
                    "==",
                    "6.31.1"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": [
                [
                    "==",
                    "7.0.0"
                ]
            ]
        },
        {
            "name": "ptyprocess",
            "specs": [
                [
                    "==",
                    "0.7.0"
                ]
            ]
        },
        {
            "name": "pure_eval",
            "specs": [
                [
                    "==",
                    "0.2.3"
                ]
            ]
        },
        {
            "name": "pyarrow",
            "specs": [
                [
                    "==",
                    "21.0.0"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": [
                [
                    "==",
                    "2.11.7"
                ]
            ]
        },
        {
            "name": "pydantic_core",
            "specs": [
                [
                    "==",
                    "2.33.2"
                ]
            ]
        },
        {
            "name": "pydeck",
            "specs": [
                [
                    "==",
                    "0.9.1"
                ]
            ]
        },
        {
            "name": "Pygments",
            "specs": [
                [
                    "==",
                    "2.19.1"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    "==",
                    "3.2.3"
                ]
            ]
        },
        {
            "name": "PySocks",
            "specs": [
                [
                    "==",
                    "1.7.1"
                ]
            ]
        },
        {
            "name": "python-dateutil",
            "specs": [
                [
                    "==",
                    "2.9.0.post0"
                ]
            ]
        },
        {
            "name": "pytz",
            "specs": [
                [
                    "==",
                    "2025.2"
                ]
            ]
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    "==",
                    "6.0.2"
                ]
            ]
        },
        {
            "name": "pyzmq",
            "specs": [
                [
                    "==",
                    "26.4.0"
                ]
            ]
        },
        {
            "name": "referencing",
            "specs": [
                [
                    "==",
                    "0.36.2"
                ]
            ]
        },
        {
            "name": "regex",
            "specs": [
                [
                    "==",
                    "2024.11.6"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    "==",
                    "2.32.4"
                ]
            ]
        },
        {
            "name": "rpds-py",
            "specs": [
                [
                    "==",
                    "0.26.0"
                ]
            ]
        },
        {
            "name": "safetensors",
            "specs": [
                [
                    "==",
                    "0.5.3"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.15.3"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    "==",
                    "0.13.2"
                ]
            ]
        },
        {
            "name": "selenium",
            "specs": [
                [
                    "==",
                    "4.34.2"
                ]
            ]
        },
        {
            "name": "sentry-sdk",
            "specs": [
                [
                    "==",
                    "2.33.1"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "==",
                    "80.9.0"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    "==",
                    "1.17.0"
                ]
            ]
        },
        {
            "name": "smmap",
            "specs": [
                [
                    "==",
                    "5.0.2"
                ]
            ]
        },
        {
            "name": "sniffio",
            "specs": [
                [
                    "==",
                    "1.3.1"
                ]
            ]
        },
        {
            "name": "sortedcontainers",
            "specs": [
                [
                    "==",
                    "2.4.0"
                ]
            ]
        },
        {
            "name": "soupsieve",
            "specs": [
                [
                    "==",
                    "2.7"
                ]
            ]
        },
        {
            "name": "SQLAlchemy",
            "specs": [
                [
                    "==",
                    "2.0.41"
                ]
            ]
        },
        {
            "name": "stack-data",
            "specs": [
                [
                    "==",
                    "0.6.3"
                ]
            ]
        },
        {
            "name": "streamlit",
            "specs": [
                [
                    "==",
                    "1.47.0"
                ]
            ]
        },
        {
            "name": "streamlit-option-menu",
            "specs": [
                [
                    "==",
                    "0.4.0"
                ]
            ]
        },
        {
            "name": "sympy",
            "specs": [
                [
                    "==",
                    "1.13.1"
                ]
            ]
        },
        {
            "name": "tenacity",
            "specs": [
                [
                    "==",
                    "9.1.2"
                ]
            ]
        },
        {
            "name": "threadpoolctl",
            "specs": [
                [
                    "==",
                    "3.6.0"
                ]
            ]
        },
        {
            "name": "tokenizers",
            "specs": [
                [
                    "==",
                    "0.21.1"
                ]
            ]
        },
        {
            "name": "toml",
            "specs": [
                [
                    "==",
                    "0.10.2"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    "==",
                    "2.6.0"
                ]
            ]
        },
        {
            "name": "tornado",
            "specs": [
                [
                    "==",
                    "6.5.1"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "==",
                    "4.67.1"
                ]
            ]
        },
        {
            "name": "traitlets",
            "specs": [
                [
                    "==",
                    "5.14.3"
                ]
            ]
        },
        {
            "name": "transformers",
            "specs": [
                [
                    "==",
                    "4.52.4"
                ]
            ]
        },
        {
            "name": "trio",
            "specs": [
                [
                    "==",
                    "0.30.0"
                ]
            ]
        },
        {
            "name": "trio-websocket",
            "specs": [
                [
                    "==",
                    "0.12.2"
                ]
            ]
        },
        {
            "name": "typing-inspection",
            "specs": [
                [
                    "==",
                    "0.4.1"
                ]
            ]
        },
        {
            "name": "typing_extensions",
            "specs": [
                [
                    "==",
                    "4.14.0"
                ]
            ]
        },
        {
            "name": "tzdata",
            "specs": [
                [
                    "==",
                    "2025.2"
                ]
            ]
        },
        {
            "name": "urllib3",
            "specs": [
                [
                    "==",
                    "2.5.0"
                ]
            ]
        },
        {
            "name": "wandb",
            "specs": [
                [
                    "==",
                    "0.21.0"
                ]
            ]
        },
        {
            "name": "wcwidth",
            "specs": [
                [
                    "==",
                    "0.2.13"
                ]
            ]
        },
        {
            "name": "websocket-client",
            "specs": [
                [
                    "==",
                    "1.8.0"
                ]
            ]
        },
        {
            "name": "Werkzeug",
            "specs": [
                [
                    "==",
                    "3.1.3"
                ]
            ]
        },
        {
            "name": "wsproto",
            "specs": [
                [
                    "==",
                    "1.2.0"
                ]
            ]
        },
        {
            "name": "xgboost",
            "specs": [
                [
                    "==",
                    "3.0.2"
                ]
            ]
        }
    ],
    "lcname": "amylodeep"
}
        
Elapsed time: 1.13634s